SHORT COMMUNICATION

EVIDENCE FOR D-CONFIGURATION OF N-MALONYLMETHIONINE, THE METABOLITE OF D-METHIONINE IN NICOTIANA RUSTICA*

B. LADEŠIĆ, M. POKORNY and D. KEGLEVIĆ

Tracer Laboratory, Institute "Ruder Bošković", Zagreb, Yugoslavia

(Received 6 January 1970)

Abstract—Evidence for the p-configuration of N-malonylmethionine-methyl-¹⁴C isolated from tobacco plant fed with p-methionine-methyl-¹⁴C was obtained by acid hydrolysis of the conjugate and subsequent deamination of methionine with p-amino acid oxidase. Parallel experiments with synthetically prepared N-malonyl-p-methionine were carried out.

Our studies on the metabolism of optical isomers of methionine in tobacco plant have shown¹ that, under identical experimental conditions, the D-isomer is metabolized into the corresponding N-malonyl conjugate while this pathway is lacking with its enantiomorph. In the present communication, evidence for the D-configuration of N-malonylmethionine formed in tobacco plant is presented.

A large amount of D-methionine-methyl- 14 C was applied to five intact Nicotiana rustica plants and N-malonylmethionine-methyl- 14 C was isolated from the root extracts by the procedure described previously. Chromatographically and radiochemically pure metabolite was subjected to acid hydrolysis and aliquots were tested as substrates for L- and D-amino acid oxidase. For comparison, N-malonyl-D-methionine was prepared and all assays on the metabolite were carried out in parallel with the synthetically obtained conjugate. Since, α -keto- γ -methylthiobutyric acid, the deamination product of methionine, is an unstable compound especially susceptible to oxidation to the sulphoxide stage $^{1-3}$ the amount of methionine in the incubation mixture before and after the enzymatic reaction was quantitatively determined.

The results of the experiments clearly show that methionine originating from the *N*-malonyl conjugate formed in the plant is not a substrate for L-amino acid oxidase while with D-amino acid oxidase it undergoes a complete deamination (Table 1). The resulting keto acid was identified as the 2,4-dinitrophenylhydrazone derivative. However, during the isolation procedure, some decomposition of the acid took place and a great part of the hydrazone.

^{*} Part VI in the series Biochemical Studies in Tobacco Plants.

¹ D. Keglević, B. Ladešić and M. Pokorny, Arch. Biochem. Biophys. 124, 443 (1968).

² T. A. LARUE, B. F. GERULAT and C. P. BERG, Arch. Biochem. Biophys. 121, 22 (1967).

³ M. Pokorny, E. Marčenko and D. Keglević (in press).

when chromatographed on paper, underwent oxidation to the corresponding sulphoxide; the radioactivity of both the hydrazones accounted for 61-67% of the initial substrate activity.

The present finding is an additional support for the presumption^{1,3,4-6} that N-malonylation of all D-amino acids in plants proceeds under retention of configuration.

	_
TABIET	OXIDATION OF METHIONINE BY THE ACTION OF D-AMINO ACID OXIDASE

	Amount tested		Amount recovered		Total deamination	
Sample originating from	Ι (μ g)	II (counts/min)	Ι (μ g)	II (counts/min)	calca I (%)	ılated II (%)
N-Malonylmethionine-methyl-14C,	232	14,100	8	630	96.6	96.2
from plant	224	13,620	10	650	95.5	95-2
N-Malonyl-D-methionine,	270	<u>-</u>	10	_	96.2	_
synthesized	270	_	13	<u> </u>	95.2	
D-Methionine	150		4	_	97.3	_

EXPERIMENTAL

Materials and Methods

p-Methionine-methyl-1⁴C (90 mg, spec. act. 56·14 µc/m-mole, [a]_D +9·9°, in water) was administered in one dose to five hydrocultured intact Nicotiana rustica plants which were then allowed to metabolize for 6 days. N-Malonylmethionine-methyl-1⁴C was isolated from the MeOH root extracts as already described, the final purification of the metabolite being performed by fractionation on a Sephadex G-25 column. p-Amino acid oxidase (from hog kidney, Fluka, pract. and Koch-Light 16 units/mg) and L-amino acid oxidase (from Crotalus adamanteus, Koch-Light) were used.

Paper chromatography, electrophoresis and radioactive counting procedures were performed as already described.¹ Methionine was determined by the ninhydrin method following essentially the standard procedure; extinction was measured on a Beckman DU spectrophotometer at 510 m μ .

Configuration of C-2 in N-Malonylmethionine

Samples of the conjugate were hydrolysed in 2 N HCl at 100° for 2 hr. Hydrolysates were evaporated to dryness in vacuo, the residues were dried over NaOH and dissolved in water to a known volume. Portions of each sample were applied to Whatman paper, previously washed with n-BuOH-acetic acid- H_2O (60:15:25), chromatographed in the same solvent and scanned for radioactivity; the methionine peak was either eluted with 50% EtOH and checked for radioactivity, or developed with ninhydrin (0.5% in acetone-0.05 M phosphate buffer pH 7.0, 9.5:0.5, v/v), the spot eluted with EtOH- H_2O (3.5:1, v/v plus 5 mg CuSO₄ × 5 H_2O) and the extinction of the solution was measured.

Incubations were performed with 1-2 μ mole of methionine, 0.05 M pyrophosphate buffer, pH 8·2, and 0·7-1·0 mg of p-amino acid oxidase in a total volume of 2·0 ml at 37° for 10-16 hr. Reaction mixtures were deproteinized by addition of 10 ml EtOH, followed by centrifugation. Aliquots of the supernatant were evaporated to dryness in vacuo, the residue was dissolved in about 1 ml of water and passed through a column of Dowex 50X-8 H⁺ followed by water. Elution was carried out with N NaOH, the amino acid fraction was neutralized with 0·1 N acetic acid and concentrated in vacuo to known volume: aliquots were then taken for spectrophotometric and radioactive determination as described above. Aliquots of the supernatant or water effluent were shaken with 0·2% 2,4-dinitrophenylhydrazine solution in 2 N HCl, the formed hydrazones were isolated by extraction procedure¹ and checked for radioactivity and chromatographic purity.

The same assays with synthetically prepared N-malonyl-p-methionine, as well as control experiments in which methionine and p-amino acid oxidase were omitted together and separately, were performed in parallel,

Syntheses

N-Ethoxymalonyl-D-methionine methyl ester was prepared from D-methionine methyl ester⁸ and monoethyl malonate with dicyclohexylcarbodi-imide as already described for the DL-compound.¹ Viscous oil, yield

⁴ N. Rosa and A. C. Neish, Can. J. Biochem. 46, 797 (1968).

⁵ W. Eschrich and T. Hartmann, *Planta* 85, 213 (1969).

⁶ B. Ladešić and D. Keglević, Phytochem. 8, 51 (1969).

⁷ V. M. Ingram and A. O. W. Stretton, Biochim. Biophys. Acta 63, 20 (1962).

⁸ M. Brenner, H. R. Müller and R. W. Pfister, Helv. Chim. Acta 33, 568 (1950).

90%, [α]_D +7·8° (ca. 2·0 in ethanol); for analysis it was distilled in a micro-tube at 145–150°/0·01 mm Hg (Al block). (Found: C, 47·41; H, 6·92; N, 5·25; S, 11·49. $C_{11}H_{19}NO_5S$ required: C, 47·64; H, 6·90; N, 5·05; S, 11·56%.)

N-Malonyl-p-methionine was obtained as described for the pL-compound; viscous oil (yield 90%) which solidified on standing; $[\alpha]_D - 17\cdot 2^\circ$ (ca. 2·0 in ethanol). Bis-dicyclohexylamine salt: m.p. 142-143°, from ethanol-ether, $[\alpha]_D - 17\cdot 5^\circ$ (ca. 1·6 in ethanol). (Found: C, 64·41; H, 10·06; N, 7·20; S, 5·36. C₃₂H₃₉N₃O₅S required: C, 64·28; H, 9·95; N, 7·03; S, 5·36%.) Ca-salt: white powder containing 1 mol. H₂O $[\alpha]_D - 10\cdot 0^\circ$ (ca. 1·7 in water). (Found: C, 32·78; H, 4·52; N, 4·80; Ca, 13·38. C₈H₁₁NO₅SCa × H₂O required: C, 32·98; H, 4·49; N, 4·81; Ca, 13·76%.)

N-Malonyl-D-methionine sulphoxide, Ca-salt. A solution of N-malonyl-D-methionine Ca-salt (136 mg) in 1 ml of water was oxidized with 0.05 ml of 30% H_2O_2 at room temp. for 3 hr. After evaporation the residue was crystallized from 60% EtOH; on standing at 0°, 109 mg (73%) of white crystals with $[\alpha]_D - 20.0^\circ$ (ca. 1.6 in water) separated. The compound crystallized with 1.5 H_2O . (Found: C, 30.45; H, 4.51; N, 4.56; Ca, 12.98. $C_8H_{11}NO_6SCa \times 1.5 H_2O$ required: C, 30.37; H, 4.46; N, 4.43; Ca, 12.66%.)

Acknowledgement—The authors are indebted to Dr. O. Hadžija for microanalytical determinations,